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Received 10 February 1986, in final form 16 September 1986 

Abstract. The radiation reaction of electrons and positrons in a magnetic field is discussed 
using quantum electrodynamics based on the exact solution of Dirac’s equation. One 
quantum number arising from this solution is found to depend on the position of the centre 
of gyration. The change in this quantum number under the emission or absorption of 
radiation is interpreted as a change in the centre of gyration, which leads to a classical 
current. A conservation law for momentum components in the xy plane may be derived 
from this interpretation. ‘Quantum broadening’ is reinterpreted as a change in the 
gyrocentre instead of a spread in the wavefunction. The concept of recoil is generalised 
to include processes involving pair production and annihilation. 

1. Introduction 

This paper examines the manner in which charged fermions in a magnetic field along 
the z axis recoil in the x y  plane while emitting or absorbing radiation. The effect of 
the magnetic field is included exactly by using solutions of the Dirac equation 

where A,(x)  represents the 4-potential of the external field. All calculations are 
performed in the radiation gauge A o ( x )  = 0, but the results are valid for all gauge 
choices. Natural units c = 1, h = 1 are used unless otherwise stated and the charge on 
the electron is taken to be -e .  

Previous classical, semiclassical and quantum results concerning recoil in a magnetic 
field are reviewed below. In 0 2, a brief analysis of the solutions for the Dirac equation 
in a magnetic field is performed, based mainly on the results of Melrose and Parle 
(1983a, b). Section 3 contains a short discussion of gauge transformations, followed 
by the introduction of a coordinate transform operator, which is a generalisation of 
the familiar concept of a translation. This operator is used in 0 4 to interpret the 
previously derived results for the exact recoil of an electron or positron in a magnetic 
field, and this interpretation is extended to include the processes of pair creation and 
annihilation. The emission and absorption of radiation is found to be accompanied 
by a change in the electric dipole moment of the system. In the final section, some 
applications of this new effect are considered. 

It has been known for many years that when a charged particle emits or absorbs 
radiation, it experiences a reaction or recoil force, as required by conservation of 
energy-momentum. The treatment of the radiation reaction force on a classical electron 
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is based on a formula of Dirac (1938). This equation has some non-physical solutions 
which are exponentially divergent or ‘runaway’, and these must be eliminated by 
appealing to conservation of energy. The effect of radiation reaction on the trajectory 
of a classical electron in a static homogeneous magnetic field has been considered by 
several authors. Eliezer (1947) used the Dirac prescription for the force on the electron 
and removed the non-physical solutions to derive the equations of motion. The result, 
in the non-relativistic limit, is an equiangular spiral in a plane perpendicular to the 
magnetic lines of force, with the electron eventually coming to rest at a point correspond- 
ing to what would be the centre of the orbit if radiation reaction was ignored. Eliezer 
found no motion of the guiding centre ( G C )  of the electron motion, even when most 
of the electron’s energy is radiated away within a fraction of a complete orbit. 

Plass (1961) performed a similar calculation, obtained the same result and went 
on to find the rate of energy loss by the electron. This rate had previously been obtained 
by Schwinger (1949), using a different method without solving for the electron trajec- 
tory, and is quoted in most modern accounts of radiation damping in a magnetic field 
(e.g. Suvurov and Chugunov 1973, Chugunov et a1 1975, Landau and Lifshitz 1975). 
In none of these classical treatments is any evidence found of electron recoil perpen- 
dicular to the magnetic field. 

Field-free quantum electrodynamics includes radiation reaction through the explicit 
conservation of 4-momentum. Only the energy and momentum parallel to the field 
are necessarily conserved when the exact Hamiltonian in a magnetic field is used. 
Sokolov and Ternov (1953, 1955, 1968) have considered the effect of the emission of 
synchrotron radiation on the guiding centre of an electron. They conclude that the 
position of the GC undergoes ‘quantum broadening’, i.e. the mean distance from the 
origin to the GC increases due to the quantised nature of the radiation field. This 
phenomenon was predicted by Sands (1955) and by Kolomenskii and Lebedev (1956), 
who described it as radial oscillations or fluctuations. This effect has also been detected 
experimentally by Korolev et a1 (1961). 

Guiding centre drift effects such as quantum broadening are purely quantum effects 
which do not arise in classical treatments of synchrotron radiation or related processes. 
This has caused some confusion in recent papers. Lieu et a1 (1983, 1984) found an 
inconsistency in two results derived using semiclassical and quantum theories of 
cyclotron emission, and so found an apparent conflict between the predictions of the 
laws of conservation of linear and angular momentum. The error in this work stems 
from the use of a classical radiation formula which does not include guiding centre 
drift or radiation damping in any form (White and Parle 1985). 

Quantum broadening is the only previously derived consequence of electron recoil 
perpendicular to the magnetic field. In the remainder of this paper, more general 
results are derived and several new effects are predicted. These results provide a new 
interpretation of quantum broadening which is invariant under time reversal and thus 
intuitively more satisfactory. 

2. Wavefunctions in a magnetic field 

Solutions of the Dirac equation in a magnetic field have been published elsewhere 
(Johnson and Lippmann 1950, Melrose and Parle 1983a). Different solutions are 
obtained depending on the gauge choice used to describe the magnetic field, but the 
resulting wavefunctions are related by gauge transformations (see equation (28)). The 
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quantum numbers needed to completely describe the wavefunctions are: E = * l ,  the 
sign of the energy; n = 0 , 1 , 2 ,  . . . , the Landau quantum number; (+ = * l ,  the spin; p z ,  
the parallel momentum, which here is chosen to be in the same sense as the particle 
velocity for both positrons and electrons; and another quantum number, denoted here 
by g, which contains information about the position of the guiding centre (GC) of the 
particle in the xy plane. The positional quantum number may be represented in many 
ways, two of which are described below. 

In the P, representation, the positional quantum number g is equivalent to P,, 
which has continuous eigenvalues. With the gauge choice A = (0, Bx, 0) for the magnetic 
field, referred to below as the Landau gauge, the wavefunctions have the form 

with 

5 = @ ( x +  P, / eB)  NI = LyL,/@ 

v,(o = ( J ; ; 2 f l n ! ) - ” 2 ~ n ( 5 )  (4) 

where r = {n ,  U, p , }  and one has C’C = 1. The Ci are determined by the requirement 
that the wavefunction satisfy the Dirac equation and is an eigenvector of the particular 
spin operator selected. The quantum number P, is related to the x position of the GC, 
as derived from the relation 

( q I x l q ) =  -P , / eB  = xo.  ( 5 )  

(qlx’ls) = ( q I ( x  -xo)219)+ x: 

Now the expectation value for x 2  for a particle in state q is 

= ( l / e B ) ( n - f Z , , + P : / e B )  ( 6 )  

where Z,, is the expectation value of the spin angular momentum operator along the 
z axis 

One has - 1 s Z,, s 1 and ZZq = - 1  in the ground state n = 0. Now consider a classical 
electron orbiting with radius R around a point with fixed x coordinate xo. The 
mean-square x coordinate for the particle is 

( x ’ ) = +  R ’ + x ;  (8) 
and, comparing with ( 6 ) ,  the mean orbital radius for a quantum electron may be 
identified: 

Rf ,  = ( 2 / e B ) ( n  -; Zz,) ( 9 )  

which in the classical limit n + 00 reproduces the usual result R =pi/ eB. A particle 
in an eigenstate of the $, operator thus has a guiding centre whose x coordinate is 
fixed and whose y coordinate is undetermined (see figure l (a ) ) .  

In the s representation, the positional quantum number g is equivalent to s, which 
has non-negative integral eigenvalues. With the gauge choice A = f B(  -y, x, 0 )  for the 
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Figure 1. Recoil for an electron initially in an eigenstate of the positional quantum number, 
emitting photons with a total 3-momentum of k. ( a )  P, representation, ( b )  s representation. 
In the latter case, the centre of symmetry has been translated from the origin to 1:. The 
radii of the circles, representing the classical orbital radius of the electron, are changed 
by the emission or absorption of radiation, but the locus of the GC remains constant in 
size while being translated, as the numerical value of g is the same on both sides of (60). 

magnetic field, referred to below as the cylindrical gauge, the wavefunctions have the 
form 

with 

p = 4 eBr2 N2 = 2 r L , / e B .  ( 1 1 %  b )  

JZ(x) = [ n ! / ( n +  ~ ) ! ] " ~ e - ~ ' ~ x ' ' ~ L ~ ( x )  ( 1 2 )  

The JZ functions are related to the generalised Laguerre polynomials 

and only exist for n 2 0, n + Y 3 0. Note that the C, are chosen to be the same in both 
representations. 

The value of the radial quantum number s is related to the distance of the centre 
of gyration from the z axis. The expectation value for the square distance of the 
particle from the axis is given by 

(qlr'lq) = ( Z / e B ) ( n  +s+i-$ Z z q )  

= R i + ( 2 / e B ) ( s + f )  ( 1 3 )  
where (9) has been used to derive the last line. Now consider the same quantity for 
a classical electron with an orbit of radius R around a point at distance a from the origin: 

( r 2 )  = R 2 +  a2 .  (14 )  
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Thus the distance from the centre of gyration to the origin for a quantum electron is 
identified as 

a’, = ( 2 s +  l)/eB. (15) 

This corrects the analysis by Sokolov and Ternov (1968), who neglected the constant 
term. The locus of the guiding centre is thus a circle of radius a, centred on the origin 
(see figure l (b)) .  No information is known about the position angle of the centre on 
this locus. Quantum broadening is easily demonstrated using this representation. The 
scattering matrix element for the process where an electron passes from state 4 to state 
q’ while emitting photons of total 3-momentum k has the form (Melrose and Parle 
1983b) 

If the electron is initially in an eigenstate of ŝ  with eigenvalue s i ,  an elementary 
calculation shows that the mean-square distance of the GC of the electron orbit from 
the origin increases: 

and so quantum broadening appears to takes place. 

tions of the total angular momentum operator J z ,  with eigenvalues 
The eigenfunctions of s  ̂ are particularly imp2rtant because they are also eigenfunc- 

J, = ( n  - s - 4). (18) 

This includes both orbital and spin contributions. These particular wavefunctions have 
this property because of their cylindrical symmetry around a line parallel to the magnetic 
field passing through the origin. More generalised versions of these wavefunctions are 
considered below where the ‘centre of symmetry’ can lie anywhere on the xy plane. 

A wavefunction in one gauge can be transformed into the other gauge by performing 
the appropriate transform (see (28)). In addition, solutions in different representations 
must also be related, as the set of quantum numbers in each representation is complete. 
The wavefunctions (2)  and (10) are related by 

with r = {n, p z ,  U} and where the expansion coefficients are given by 

Quantities which depend on the form of the positional quantum number g are termed 
‘representation dependent’ and need not be gauge dependent. 

The result used here is the form of the factor associated with each fermion line 
which depends on the positional quantum number and which is obtained by summing 
over the values of g for each virtual state on the line (Melrose and Parle 1983b, equation 
24). For an open fermion line with incoming state (initial electron or final positron) 
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quantum numbers { E ,  r, g }  and outgoing state (final electron or initial positron) quantum 
numbers { E ’ ,  r’ ,  g’}, and with total photon momenta associated with the vertices on 
the line of k @ ,  the factor is 

27r 
G p : p , ( k )  =- 8 ( P y  - P I -  k,) exp 

4‘ 
G, . , (k)  = (i  ei~)”’-sJJf.-,(k:/2eB) (23)  

in the Py and s representations respectively. A closed fermion loop which has no 
external fermion quantum numbers associated with it is necessarily independent of 
the positional quantum number and the representation, and summing over the inter- 
mediate values of the positional quantum number yields a factor of 

These results were derived in vacuo, but may be readily generalised to media which 
have fermion occupation numbers which are independent of the positional quantum 
number. Homogeneous media, which are the same wherever they are observed, fall 
into this category. 

3. Gauge and coordinate transforms 

Gauge invariance requires that any physical quantity must be left unchanged by a 
gauge transformation, which in this context is a unitary contact transformation of the 
wavefunctions and operators. Solutions of the Dirac equation in two different gauges 
are related by such a transformation. If the external 4-potentials in the two gauges 
are related by 

A : ( x )  = A ? ( x ) + P f ( x )  (25) 
then the kinetic momenta are related by 

Il; = (ia’ + e A : ( x ) )  = S, , (x)II?S, ; ’ (x)  

where S , , ( x ) ,  the contact transformation, is given by 

s , , ( x )  = S ; i ( x )  = exp(ief(x)). (27) 
Note that A I  and A,  only determine f to within a constant. Solutions of the Dirac 
equation in the two gauges are related by 

* 2 ( x )  = S2l(X>*I(X). (28) 
As f is determined to within a constant, Szl can include an undetermined phase factor. 
When all wavefunctions are transformed according to (28)  and all operators according 
to ( 2 6 ) ,  then all amplitudes and hence all physical results remain invariant. 

Any bilinear form constructed from the fermion wavefunctions evaluated at the 
same point in spacetime is invariant under gauge transformations because of the unitary 
property S ( x ) S t ( x )  = I which transforms of the type (27) satisfy. One such bilinear 
form is the factor @ q , ( x ) y @ F q ( x )  appearing at each vertex of the Feynman diagram, 
and hence the diagram amplitude is invariant under the restricted class of gauge 
transformations considered here. In particular, G,, , (k)  given by (22) and (23)  is 
dependent only on the representation of g and not on the choice of gauge. 
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In the following calculations, gauge transformations of the potential representing 
the static magnetic field are used in the construction of coordinate transformations. 
The fermion wavefunctions in a magnetic field are generally not covariant under the 
translation 

x’fi = xfi - x;  (29) 

and hence the generator of such a translation does not represent a conserved quantity. 
The reason for the lack of covariance lies in the fact that the 4-potential representing 
the magnetic field is a function of the coordinates relative to some fixed origin 0 and 
a translation of the form (29), equivalent to choosing a new origin 0’ at x o ,  also causes 
a change of gauge. 

The translation (29) may be represented by an operator T ( x o )  with the properties 

which operates on all wavefunctions to the right. A coordinate transformation operator 
R ( x ,  x,)  is to be constructed which causes a translation without creating a gauge 
transformation. One writes 

R ( x ,  xo) = S ( X ,  xo) T ( x 0 )  = T ( x o ) S ( x  + xo, xo) (31) 
where S(x, xo)  is a gauge transformation chosen to cancel the transformation caused 
by T ( x o ) .  There is a requirement on S that the kinetic momenta I I p  (and hence the 
Hamiltonian, parallel momentum and spin operators) are left invariant under the 
coordinate transformation 

R ( x ,  x o ) r I f i R - ’ ( x ,  x o )  =nfi. (32) 

R ( x ,  0) = 1 (334 b) 

Any sensible coordinate transform must satisfy the identity and inverse relations 

R - ’ ( x ,  xo) = R ( x ,  -xg) 

which may be expressed as conditions on the gauge transformation S. Writing S in 
the form 

(34) 

( 3 5 )  

(36) 

(37) 

S ( x ,  xo)  = exp(ief(x, x o ) )  

f ( x ,  0) = 0 

f ( x  - xo, -xo) = - A x ,  xo). 

R ( x ,  x o ) V ( x )  = V ( x  - x , )S (x ,  xo). 

the identity condition becomes 

and the inverse condition may be written as 

The coordinate transform R operating on a wavefunction to the right yields 

Taking the Dirac conjugate of both sides and using (33 b ) ,  one obtains the corresponding 
relation 

(38)  R ( x ,  x o ) Y ( x )  = @(x - X 0 ) S t ( X ,  xo) = @ ( X ) K ’ ( X ,  xo) 

where the transform operator operates to the left. 

S ( x ,  x o ) T ( x o ) ( i a f i  + e A f i ( x ) ) S ( x ,  - x 0 ) T ( - x o )  = i a ’ + e A f i ( x - X o ) + e a f i f ( x ,  xo )  

Now consider the invariance condition (32). The left-hand side is 

(39) 
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and so f ( x ,  xo)  must satisfy the requirement 

(40) 
Equation (40) may be integrated to findf to within a function of the parameter xo.  This 
function may be determined by applying the condition (36). The integral is path 
independent as the right-hand side of (40) is irrotational. The result may be written 
in the form 

a "f( x, x0 )  = Ap ( x ) - A" ( x  - xg). 

f ( x ,  xo) = I:,2 d x : ( A @ ( x ' )  - A " ( x ' -  XO)). (41) 

Note that, using (41), it can be shown that R is itself gauge covariant and satisfies a 
relation equivalent to (26). 

The above arguments are valid for potentials describing all kinds of external fields. 
From now on, only a static homogeneous magnetic field is considered. As the momen- 
tum components in the temporal and z direction are conserved, it is convenient to 
restrict the translations to lie in the xy plane, i.e. x;  = (0, x o ,  yo ,  0). A property of the 
coordinate transform operator R in a magnetic field is that two operators with non- 
parallel xo do not commute. The operators satisfy the gauge-independent relation 

R - ' ( x ,  x 2 ) R - ' ( x ,  x , ) R ( x ,  x 2 ) R ( x ,  x , )  = exp(ieB(x, X X ~ ) , , ) .  (42) 
By construction, the operators R may be used as generators of infinitesimal transla- 

tions which leave the Hamiltonian invariant and hence correspond to a conserved 
momentum. This momentum, called pseudomomentum by Avron et a1 (1978) and 
generalised momentum by Herold et a1 (1981), has a component in the direction of 
the unit vector a given by 

and hence 

d Xj 
(44) 

As the operators R do not commute for translations in different directions, the 
commutator for the momentum components in the x and y directions is non-zero: 

(45 1 
These operators are mentioned here only for completeness and are not used below. 
The theory of quantum recoil depends on the existence of the operator R which 
generates finite translations. 

This section concludes with the calculation of the matrix elements of the coordinate 
transform operator R :  

[ P x ,  Py] = -ieB. 

R,~,(XO) = dx * ; , ( x ) R ( x ,  xo ) * , (x )  I 
= dxS(x,x,)*\I(x)9,(x-x0). 
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As R has been defined to leave the Hamiltonian, parallel momentum and spin operators 
invariant, the matrix element is zero unless the quantum numbers E ,  n, p z  and U are 
the same for both wavefunctions in (46). One writes 

R 9  9 ( x o )  = E ' ,  rR&! &?('I)) (47) 
which leaves only the reduced matrix elements to be calculated. Once these are known, 
the completeness relation for the solutions of the Dirac equation may be used to 
expand the translated wavefunction in terms of the original wavefunctions: 

(48) R ( x ,  XO)*\II:,(X) = c R ,  g(xo)*\II:g ( x ) .  , 
This is performed below for the wavefunctions (2) and (10). 

I:i the Landau gauge, the transformation operator is given by 

R ( x ,  x,) =exp[-ieBx,(y-fy,)]T(x,) (49) 

calculated using (41), and integrating (46) yields the result 

R P > , P > ( x o )  = ( ~ T / L , ) ~ ( P :  - P, + e B x o )  exp[-iy,(P, - $  eBx,Jl. (50) 

(51) 

(52) 

The transformed wavefunction is then given by 

R ( x, xo)* E, P, ( x  1 = exp[ - iY o( p, - t eBx0) I* E, P ,  - e B x o ( X  ) . 

R ( x ,  xo)  = exp[i i e B ( x y o - y x , ) ] T ( x o ) .  

In the cylindrical gauge, the transform operator is given by 

In this case, rather than integrate (46) directly, it is more convenient to use the 
representation (20) for the wavefunctions in the s representation. After some algebra, 
one obtains 

Performing the integrals in (53), one obtains the final result 

R , , , ( x , )  = (-ei'*)s'-'J~,-s(po) 
1 / 2  

xo + iy, = (2) ei+o. 

(54) 

(55) 

The transformed wavefunction is then given by 

R ( x ,  x 0 ) * ~ , , ( x )  = (-e''o)"-sJJ:,-,(po)*~,s~(x). (56) 

The concept of a translation has now been generalised to allow the construction 
of a coordinate transformation operator which leaves the Hamiltonian and other 
operators invariant. An explicit representation of this operator has been found and 
its matrix elements calculated. Note that the final form of the matrix elements depends 
on the representation but not on the gauge. 

The wavefunctions R ( x ,  x o ) V ( x )  and Q ( x ) R - ' ( x ,  x,) represent wavefunctions 
which have been translated in space but still satisfy the Dirac equation in the original 
gauge. Using the reduced matrix elements R,.,( x o ) ,  the translated wavefunctions may 
be expressed as linear combinations of the original wavefunctions. The positional 
quantum numbers g of the translated wavefunctions must be interpreted relative to 
the new origin determined by the translation. In particular, the wavefunction 
R ( x ,  xo)*Ts(x) has cylindrical symmetry around the axis passing through x g .  

I'  
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4. Quantum recoil 

In Melrose and Parle (1983b), a procedure was developed for the calculation of 
Feynman amplitudes in the momentum representation. In particular, the dependence 
of the amplitude on the values of the positional quantum number is given by a factor 
( 2 2 )  or (23) for each open fermion line, where g and g’ are the positional quantum 
numbers associated with the incoming fermion edge and the outgoing fermion edge 
for the line. It is this function which determines how fermions recoil in the x y  plane. 

Consider first the case of an open fermion line whose incoming edge represents 
an  electron in the initial state with quantum numbers q, and whose outgoing edge 
represents an electron in the final state with quantum numbers q 2 .  Let the total 
4-momentum associated with the vertices on the line be given by k’. If S,, , , , (  k’)  is 
the amplitude for the electron to scatter from q, to 4 2 ,  then the final-state wavefunction 
is given by 

YIr;(X) =c ~ ; , ( x ) ~ , , - , , ( k ’ ~  
42 

where S, , , , , (k ’ )  is a reduced scattering matrix element which is independent of the 
positional quantum numbers g, ,  g, and 

Let a displacement vector in the x y  plane for an  electron ( E  = +1) be defined by 

1 1 
eB eB 

[ x g f ] @ = - - ( O ,  k x b ) = - ( O ,  k , ,  -k , ,O)  (59) 

where b is a unit vector pointing in the direction of the magnetic field. Then by 
comparison of the expressions ( 2 2 )  and (23) for the representation-dependent part of 
the amplitude, and (51) and  (56) for the coordinate transform operator, one obtains 
the (representation-independent) result 

(60) 

This may be interpreted as saying that the final-state wavefunction for fixed rz is given 
by 9 L , g l ( x )  translated by x ; .  Note that the numerical value of the positional quantum 
number is the same on the right-hand side of (60) as it was before the electron was 
scattered, and  so the locus of the guiding centre has the same form before and after 
scattering, but has been translated by that amount. Hence the electron GC has recoiled 
in the x y  plane, and the final-state wavefunction may be written in the form 

@ : 2 , g l ( x ;  k )  = R ( x ,  x o f ) ~ : 2 , g , ( x ) .  

Thi: recoil is shown in figure 1 for the case of the electron initially in an  eigenstate 
of P, and s? 

For the case where the final quantum numbers r, are completely determined, the 
final-state wavefunction is given, to within a phase factor, by 

9;b) = R ( x ,  X o + ) q ; & )  ( 62 )  
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where the reduced matrix element no longer appears because the wavefunction 9; is 
normalised to unity and now indicates through the Fermi golden rule the rate of 
transition from the state described by 9:,gl to 9;. 

As any wavefunction can be represented an a superposition of eigenfunctions of 
Py or $ equation (61) is representation independent and so the interpretation of G,. , (k)  
as representing the recoil of the GC in the x y  plane is valid in all gauges and 
representations of the positional quantum number. 

This interpretation of quantum recoil gives a physical justification for the apparent 
outward drift of the guiding centre referred to above as quantum broadening. As in 
that analysis, assume that the electron is initially in a state r l ,  s, and radiates photons 
of 4-momentum k r ,  . . . , k:  , ending in a state with quantum numbers r f .  Writing the 
recoil vector due to the emission of the ith photon as 

x , = ( l / e B ) k , x b  (63) 

then the final state of the electron is given, to within a phase factor, by 

= R ( x ,  X n )  . . R ( x ,  xI)*:s,(x) 

Before emitting the first photon, the GC was at a distance 

a;=(?) 2si+ 1 

from the origin, while after emitting n photons, the GC lies at a distance ai from the point 
n 1 x,= xi=- ki x b .  

i = l  e * ( , : ,  ) 
The wavefunction itself does not spread out, rather the point X ,  about which the 
wavefunction has cylindrical symmetry moves away from the origin. The mean distance 
of the GC from the origin after the emission of n photons is given by 

which reproduces the result (17). If the emission of successive photons is essentially 
independent, then the trajectory of the centre of symmetry X ,  through the xy plane 
as n increases is described by a random walk in two dimensions, and hence the 
expectation value of IX,l increases with n, while the expectation value of (X,) remains 
at the origin. 

The result (62) for the recoil of an electron may be readily generalised to the case 
of an open fermion line whose incoming and outgoing edges represent a positron in 
the final and initial states respectively. The conjugate wavefunction is the appropriate 
one to represent a positron because it ha5 the correct time dependence for a real 
particle and is associated, in the operator $, with the positron annihilation operator. 
One obtains the corresponding relation to (60): 

where the positron ( E  = - 1 )  displacement vector is 

[ x i ] *  = -( l / e B ) ( O ,  k x b )  = -[x,’]*. (69) 
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As in the case of an electron, this result indicates that the GC of the positron recoils 
in the xy plane by the amount x i .  The displacement is equal in magnitude but opposite 
in direction to that of the electron, as is required by the C P T  invariance of quantum 
electrodynamics. 

The concept of quantum recoil can be generalised to include fermion lines represent- 
ing pair annihilation and creation. Consider first the case of an open line whose 
incoming edge represents a positron with quantum numbers q and whose outgoing 
edge an electron with quantum numbers q' ,  both in the final state. If the total photon 
4-momentum associated with the vertices on the line is k', then the wavefunction of 
the created pair, written as an outer product of single-particle wavefunctions, has the 
form 

*;(x') x ~ ' ; ( x )  = 1 S , , , ( k @ )  1 Gg,,(k)9;,.(x') x q i g ( x )  
r ' r  g ' g  

where the displacement vector is given by (59). Equation (70) involves a sum over 
the quantum number g but is otherwise independent of the positional quantum numbers 
of the final particles. This means that there is no information about the position in 
the xy plane of any one particle, and the GC is evenly distributed. There is, however, 
a known relation between the positions of the guiding centres of the two particles. 
The loci of the two GC are identical, except that that of the electron is displaced from 
that of the positron by xb. Hence a measurement of the locus of the GC of the positron 
would determine that of the electron to be at a fixed distance x: away. 

The result (70) is not unique: the final summand may be written as 

*;JX') x$;,(x)R-'(x, x,) (71) 
or in many equivalent forms, all of which have the physical interpretation that the loci 
of the GC of the two particles are identical in form but displaced from each other by 
a fixed vector 

( ~ e ~ e c t r o n - ~ p o s i t r o n ) ~  = ( l / e B ) k  x b (72) 
while the corresponding results for electron and positron scattering derived above have 
the form 

(Xfinal- X i n i t i d 1  = ( ~ / e B ) k  x b. (73) 
The relations (72) and (73)  have been derived under the assumption that there is 

no post selection of the value of the positional quantum number and hence the final 
wavefunction is a superposition of different eigenfunctions with relative amplitudes 
determined only by the process itself. Such post selection occurs when an experiment 
is performed to determine g, which disturbs the system unless it happens to be in an 
eigenstate of 2. Measurement of the values of the quantum numbers r need not, in 
principle, disturb the dependence of the system on g. 

As QED is invariant under time reversal, a result equivalent to (72) can be derived 
for the process of pair annihilation when there is no preselection of the positional 
quantum number (Aharonov et a1 1964). When the initial wavefunctions include all 
values of the positional quantum number with equal amplitude, the relation between 
the positions of the fermion guiding centres and the total photon momentum is given 
by 

(74) (Xelectron - ~ p o s i t r o n ) i  = - ( l / e B ) k  x b. 
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In particular, this relation holds when the transition rate averaged over the positional 
quantum numbers is used (Melrose and Parle 1983b). 

At this point it is clear that the representation-dependent part G,. , (k)  of the 
amplitude for an open fermion line represents the generalised recoil of the fermion in 
a direction perpendicular to the magnetic field. Although the guiding centre of a 
particle’s orbit can never be precisely determined, the change in the locus of the guiding 
centre is given by the appropriate relation (72)-(74). 

For a process represented by Feynman diagrams with more than one open fermion 
line, one can write down a relationship connecting the positions of all fermions in the 
initial and final states with the total momenta of the external photons. Using primes 
to denote particles in the final state, one finds 

The electric dipole moment for a system of classical point particles with coordinates 
xi and charges qi is given by 

P=C qjx,. 
I 

Except in the case of a system with no net charge Z i  qi = 0 ,  the dipole moment is 
defined only to within a constant vector which depends on the choice of the coordinate 
origin. If at a later time the particle coordinates are given by xi and charges by qi,  
where the total charge of the system may not vary, the change in the system electric 
dipole moment is 

which is well defined and independent of the origin. An analogue of the electric dipole 
moment may be constructed for a quantum system by replacing the point particle 
coordinates by the quantum expectation value of the particle position. Considering a 
unit volume and multiplying both sides of equation (75) by the electronic charge - e  
and using (77), one obtains 

(78) AP,  = -( l /E)AK x 6 

where P is now the polarisation density and 

AK = ki - C ki 
I I 

(79) 

is the increase in the total 3-momentum density of the radiation field. The interpretation 
of this result is discussed below. 

5. Applications of quantum recoil 

In this section, the physical effects of quantum recoil are considered. One such effect, 
the phenomenon of quantum broadening, has already been discussed in the previous 
section. Other consequences discussed below include a recoil correction to the angular 
momentum of a cyclotron photon and the existence of radiation induced currents and 
charge separation in plasmas. In this section, h and c are included in the equations. 
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5.1. Angular momentum of cyclotron photons 

The standard result for the angular momentum of a cyclotron photon emitted at the 
Ath harmonic is Jz,* =Ah. The angular momentum is measured with respect to the 
origin, which is assumed to be the guiding centre of the electron orbit. Now consider 
an electron in a state r, s emitting a cyclotron photon and ending in a state r ' ,  s t ,  with 
s' undetermined. The expectation value of s' is given by (17) and, using the result 
(18) for the angular momentum of the electron, the expectation value of the angular 
momentum of the cyclotron photon is 

( J , , ) =  h ( n - ~ - n ' + s ' ) = A h + ( h k , ) ~ / 2 e B  (80) 

where the second term is a recoil correction to the standard value for the angular 
momentum (White and Parle 1985). In the non-relativistic limit with k ,  = An,/c, this 
correction is of order E , / 2 E q .  

5.2. Radiation induced currents and charge separa tion 

According to equation (78), the emission and absorption of radiation leads to a change 
in the electric dipole moment density and hence a charge separation which depends 
on the change in the total perpendicular momentum density of the radiation field. 
Taking the vector product of both sides of this equation with B, and including all 
factors of h and c, one obtains 

AS,  = c2AP x B. (81) 

This has the form of an equation in classical electrodynamics, as it is independent of 
h, and S is just the Poynting vector. 

Note that the parameters representing the mass and charge of the fermion have 
been eliminated from equation (81), implying that it is valid for all charged point-like 
particles with spin t .  It is also independent of any radiative corrections in quantum 
electrodynamics when the bare parameters are replaced by the observed ones. A 
possible topic of future research is to determine whether this relation holds in general. 

Taking the derivative of (81) with respect to time yields the result 

where Jrad denotes a current which is induced in the plasma by radiation reaction. 
Interpreting (82) as a relation in classical plasma dynamics, the left-hand side is the 
force exerted on the radiation field by the rest of the system. The right-hand side is 
the force that the ambient magnetic field would exert on a current density Jrad. The 
equality existing between these two quantities may be taken to mean that the force 
required to increase the momentum density S / c 2  of the radiation field is supplied by 
the J x B force on the radiation induced current: equivalently, the reaction force - S / c '  
of the radiation acting on the rest of the system is balanced by the J r a d  x B force, and 
so the net force acting on the current is zero. Equation (82) then has the significance 
of a conservation law: the momentum of the radiation field is supplied by the magnetic 
field acting on Jrad. 

If regarded naively, equation (82) seems to imply that the current becomes infinite 
at low fields. This is not expected for two reasons. The first reason is that, for weak 
fields, scattering processes in the magnetic field which involve significant change in 
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the perpendicular momentum of the system are of order greater than one in the magnetic 
field strength, and so the left-hand side of (82) will tend to zero faster than B. The 
second reason is that the implicit assumption that the magnetic field is rigid (and hence 
not affected by the processes going on within it) will break down if the current increases, 
as the induced current will in turn induce an additional magnetic field. 

No assumptions about the properties of the medium have been made in deriving 
the equations of the last two sections other than that it is homogeneous. In particular, 
no assumptions have been made about the wave properties in the derivation of the 
vertex function and its representation-dependent part Ggrg.  The formula (82) for the 
current induced by radiation reaction must therefore hold for all wave modes in a 
homogeneous medium which is composed of spin-; particles which may be treated as 
point-like, such as an electron-positron or electron-proton plasma. In such a plasma, 
(82) indicates that there is an induced current associated with the damping of waves. 
If the power density dissipated by waves of wavenumber k in the mode M is PM ( k ) ,  
then the response of the plasma to the wave includes a current density induced by a 
radiation reaction given by 

where w M ( k )  is the relevant solution of the dispersion relation. 
The quantum recoil effect discussed above applies to magnetised plasmas composed 

of charged spin-; particles. In the remainder of this section, the extension of this effect 
to electrons in crystals is considered. The lattice potential may be included by using 
the ansatz of replacing the free electron mass m by the cyclotron effective mass m*, 
which may be determined by cyclotron resonance experiments. Such an approach has 
been used (Laughlin 1981) with the non-relativistic Hamiltonian to explain the quan- 
tised Hall effect. As the equations for the radiation induced current are independent 
of the mass of the fermions, they are still valid when the lattice potential is included. 

Any complete theory of quantum recoil in crystals at non-zero temperatures must 
consider the electron-phonon interaction. The recoil equations can be generalised to 
include the change in phonon momentum on the left-hand side of (81). Alternatively, 
phonon-electron interactions can be shown to be ineffective under many conditions 
of interest. Such is the case for experiments carried out in strong laboratory fields and 
at very low temperatures. In such an arrangement, when the energy of the few phonons 
present is much less than the cyclotron energy, scattering from phonons cannot occur 
(Stormer and Tsui 1983). 

Recent experiments provide some justification that the predictions of QED in a 
magnetised vacuum may be generalised to electrons in crystals, with only minor 
modification (such as the effective mass). In strong laboratory fields (I32 15 T) and 
helium temperatures, the electron gas is fully quantised and the behaviour of the 
electrons is fully determined by the magnetic field (von Klitzing et a1 1980, Stormer 
er a1 1983, Halperin 1982, Davies and Pepper 1983). Under these conditions, the 
quantum recoil effect should be observable. Current densities induced by radiation 
are small, however: for the quoted field strength and with a power dissipated per unit 
volume of P W m-3, the maximum induced current density is only 2.2 x l O - ' O P  A m-*. 

In this paper, the recoil of a charged particle due to the component of photon 
momentum perpendicular to the magnetic field has been identified and interpreted. 
This leads to a more accurate analysis of such phenomena as the quantum broadening 
of the cyclotron orbit and the angular momentum of the cyclotron photon. Quantum 
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recoil is readily generalised to the classical regime and several new effects such as the 
current induced by radiation damping in magnetised plasmas and crystals have been 
presented. 
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